查看原文
其他

东华大学武培怡/侯磊团队《Adv. Mater.》:基于氢键构筑兼具高强高模和水塑任意成形的“绿色”塑料

老酒高分子 高分子科技 2022-09-30
点击上方“蓝字” 一键订阅



传统塑料的加工过程通常涉及高温、高压等苛刻条件,能耗较高,而探索低碳环保的塑料加工方式对于实现塑料生产的节能降耗具有重要意义。近来,塑料的水塑加工引起了大家的广泛关注。水作为一类“绿色”增塑剂,可以有效改变聚合物的状态,帮助实现材料的塑形,而水分的挥发能够将形状固定。然而,该过程中塑料的机械性能和加工性能往往存在着此消彼长的关系。因此,构筑兼具优异的力学性能和便捷的水塑加工性能的“绿色”塑料仍然存在着较大的挑战。

为解决上述问题,东华大学武培怡/侯磊研究团队提出了一种以超分子类塑性水凝胶(SPHs)为加工平台构筑“绿色”塑料的新策略。该SPHs具有塑性变形和形状记忆的特性,可以在温和的条件下通过折纸、剪纸、压花等工艺加工成不同的2D/3D形状,最后在空气中自然干燥即可获得具有任意形状的塑料。该塑料中存在着密集的分子内/间氢键,因而表现出极高的力学性能,其中断裂应力高达124 MPa,杨氏模量高达3.4 GPa,优于大部分常见的塑料。此外,由于SPHs的超分子特性,得到的塑料可以进行回收利用和再次加工。

 

图1. MC/PMAA SPHs的制备

 

利用甲基纤维素(MC)和甲基丙烯酸(MAA)之间的氢键和疏水相互作用制备了MC/MAA络合物沉淀,进一步聚合形成透明的MC/PMAA SPHs。通过红外光谱观察到MAA碳碳双键的谱带强度(~1630 cm-1处)在反应过程中强烈减弱,代表MAA聚合形成PMAA。同时,疏水C-H基团伸缩振动对应的谱带向高波数移动,表明聚合过程中C-H基团周围的水分子数量增加。低场核磁结果显示,聚合后几乎所有可移动的水分子都转化为与聚合物相互作用的水分子,表明聚合过程诱导了聚合物链的水合作用。从上述分析推断,与MAA单体相比,PMAA链显示出更亲水的性质,从而形成了透明的MC/PMAA水凝胶。

 

图2. MC/PMAA SPHs的力学性能和结构表征

 

研究了不同比例下MC/PMAA SPHs的力学性能。随着MC与PMAA的比例从1:2.0增加到1:4.3,水凝胶的杨氏模量在418.5~13 MPa范围内可调。同时,具有较高MC含量的SPH (MC1/PMAA 2.0和MC1/PMAA2.5)在小应变(~5%)下出现典型的屈服行为,随后是强迫高弹形变和进一步的应力硬化,这类似于玻璃态聚合物或塑料的力学行为。从低场核磁结果中观察到SPHs中的水分子大多与聚合物链相互作用,表明该水凝胶中水分子处于“冻结状态”。对MC1/PMAA2.5水凝胶在不同温度条件下进行拉伸测试发现,随着温度的升高,水凝胶逐渐变得柔软和可拉伸,特征屈服行为在高于40 时消失,表明该水凝胶存在玻璃化转变过程。冻干后的水凝胶均表现出层状的致密结构,这可能源于:(1)MC/MAA络合物形成过程中的相分离;(2)冷压状态下MAA在络合物中的原位聚合。

 

图3. MC/PMAA的水塑加工过程和力学性能

 

基于MC/PMAA SPHs可以制备具有各种2D/3D形状的超分子塑料,不同的形状可以重新浸泡在水中进行任意切换。此外, SPHs具有双重刺激响应(温度、水)的形状记忆特性,从而赋予最终塑料丰富的形状。MC/PMAA塑料显示出3.4 GPa的高模量以及124 MPa的断裂应力,优于大多数常见的塑料。尽管MC/PMAA塑料的机械性能对环境湿度相对敏感,但在室温和相对湿度为30~40% 环境下干燥得到的“Z”形塑料固定器(总质量~0.5g)仍可支撑起25 kg的重量。

 

图4. MC/PMAA塑料内部分子相互作用的红外光谱表征

 

利用红外光谱进一步验证了MC/PMAA塑料的内部相互作用。对于MC/PMAA 塑料, v(C=O)显示出双向光谱强度变化,而v(C-O-C)在较低的波数下显示出肩峰,表明了MC与PMAA之间的氢键相互作用。具有不同组成的MC/PMAA塑料中v(C=O)和v(C-O-C)谱带进一步表明, MC与PMAA复合将部分破坏PMAA中的二重氢键,并释放出部分COOH基团与MC上的醚键形成氢键,说明体系中存在着氢键的竞争行为。与不同组成的MC/PMAA塑料的拉伸曲线进行比对,可以推断,PMAA中二重氢键与MC-PMAA分子间羧酸-醚氢键的平衡,将赋予材料最优的力学性能。此外,通过二维相关光谱(2Dcos)进一步阐述了SPHs在脱水过程中的内部相互作用变化及其对MC/PMAA塑料优异机械性能的贡献

 

图5. MC/PMAA塑料的形状编辑、应用及可重复加工性

 

类似塑料的力学行为赋予了SPHs在温和条件下的塑性成形以及形状记忆特性,利用折纸、剪纸和压花等方式可获取丰富的3D形状。由于超高的刚度和优异的塑形能力,该MC/PMAA超分子塑料在用作石膏代替品方面展现出巨大的潜力。此外,基于氢键动态交联的超分子结构,MC/PMAA塑料可以在水和热的存在下回收利用。


以上研究成果以“Hydrogen-Bonding Affords Sustainable Plastics with Ultrahigh Robustness and Water-assisted Arbitrarily Shape Engineering为题发表在《Advanced Materials》上,论文的第一作者为东华大学化学化工与生物工程学院硕士研究生宫凯,通讯作者为武培怡教授和侯磊副研究员。


该研究工作得到了国家自然科学基金的资助与支持。


原文链接:

https://onlinelibrary.wiley.com/doi/10.1002/adma.202201065


相关进展

东华大学武培怡教授课题组《Acc. Mater. Res.》:生物启发的准固态离子导体综述

武培怡教授团队《Adv. Funct. Mater.》:具有可定制力学性能的耐水离子凝胶电极用于水下生理信号监测

东华大学武培怡/焦玉聪团队《Small》:电解液添加剂助力水系锌离子电池实现宽温度范围内无枝晶生长

东华大学武培怡/孙胜童团队《Adv. Mater.》:受泳道启发,离电液晶弹性体纤维实现离子电导率随拉伸上千倍提升

武培怡教授课题组《Adv. Sci.》:一种多尺度结构调控MXene超电电极的策略及其在3D打印微型超电器件中的应用

东华大学武培怡教授课题组:时间分辨ATR-FTIR光谱研究锂电解质在P(VDF-HFP)中的扩散机制

东华大学武培怡教授课题组Joule:高功率密度和高强韧力学性能的离子热电池

东华大学武培怡教授团队《Small》:“智能粘附”的多功能水凝胶离子皮肤生物传感器

东华大学武培怡/孙胜童团队《Sci. Adv.》:湿纺连续制备大拉伸下电阻稳定的液态金属芯鞘超细纤维

东华大学武培怡/孙胜童团队《Mater. Horiz.》:受指纹结构启发构筑超高应变感知褶皱型离子导电芯鞘纤维

武培怡教授团队《Mater. Horiz.》:力学性能自增强的高透明离子凝胶用于水下超强粘附

武培怡教授团队ACS Nano:多功能智能可穿戴纤维织物

武培怡教授团队《Adv. Mater.》:可水下通信的光学伪装离子凝胶

东华大学武培怡教授/孙胜童研究员团队AFM:可自由涂覆的自适应离子凝胶油墨

武培怡教授课题组:小口香糖大变身,在家里也能制备智能传感器

东华大学武培怡教授课题组:多层级网络增强的水玻璃实现宽谱带光管理

东华大学武培怡教授课题组《Adv. Funct. Mater.》:具有诊疗功能的仿生离子皮肤

武培怡教授团队《NML》:3D打印MOF材料,“泡一泡”实现可调色发光

东华大学武培怡教授团队:水溶液自组装制备功能性超薄二维纳米材料

东华大学武培怡教授课题组:双聚合物协同机制构筑界面稳定的MOF纳米片温敏纳滤膜

武培怡教授团队《Adv. Sci.》:同步纳流体整流技术制备手性反转的GO液晶纤维

武培怡教授课题组:低频拉曼光谱解析温敏聚电解质复合物的离子相互作用类型

东华大学武培怡教授团队:自褶皱温敏水凝胶-弹性体复合管用于血管仿生流体压力传感与控制

武培怡教授团队:多重响应的纳米纤维素液晶纤维用于手性光学和先进织物

东华大学武培怡教授团队《AFM》:基于超高无机含量矿物塑性水凝胶制备可手动编辑任意形状的仿生结构复合材料

武培怡教授课题组:一种简单、高效制备聚合物纳米管的新方法

东华大学武培怡教授《Nat.Commun.》:大形变下离子传导率稳定的弹性体设计

复旦大学武培怡教授和上海大学安泽胜教授《Nature Communications》:聚合诱导自组装领域(PISA)取得重要进展

东华大学武培怡教授课题组报道具有截然不同相变行为的水凝胶及光学效果可调节的仿生皮肤

高分子科技原创文章。欢迎个人转发和分享,刊物或媒体如需转载,请联系邮箱:info@polymer.cn

诚邀投稿

欢迎专家学者提供稿件(论文、项目介绍、新技术、学术交流、单位新闻、参会信息、招聘招生等)至info@polymer.cn,并请注明详细联系信息。高分子科技®会及时推送,并同时发布在中国聚合物网上。

欢迎加入微信群 为满足高分子产学研各界同仁的要求,陆续开通了包括高分子专家学者群在内的几十个专项交流群,也包括高分子产业技术、企业家、博士、研究生、媒体期刊会展协会等群,全覆盖高分子产业或领域。目前汇聚了国内外高校科研院所及企业研发中心的上万名顶尖的专家学者、技术人员及企业家。

申请入群,请先加审核微信号PolymerChina (或长按下方二维码),并请一定注明:高分子+姓名+单位+职称(或学位)+领域(或行业),否则不予受理,资格经过审核后入相关专业群。

这里“阅读原文”,查看更多


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存